Package: DesignCTPB 1.1.1
Yitao Lu
DesignCTPB: Design Clinical Trials with Potential Biomarker Effect
Applying 'CUDA' 'GPUs' via 'Numba' for optimal clinical design. It allows the user to utilize a 'reticulate' 'Python' environment and run intensive Monte Carlo simulation to get the optimal cutoff for the clinical design with potential biomarker effect, which can guide the realistic clinical trials.
Authors:
DesignCTPB_1.1.1.tar.gz
DesignCTPB_1.1.1.zip(r-4.5)DesignCTPB_1.1.1.zip(r-4.4)DesignCTPB_1.1.1.zip(r-4.3)
DesignCTPB_1.1.1.tgz(r-4.4-any)DesignCTPB_1.1.1.tgz(r-4.3-any)
DesignCTPB_1.1.1.tar.gz(r-4.5-noble)DesignCTPB_1.1.1.tar.gz(r-4.4-noble)
DesignCTPB_1.1.1.tgz(r-4.4-emscripten)DesignCTPB_1.1.1.tgz(r-4.3-emscripten)
DesignCTPB.pdf |DesignCTPB.html✨
DesignCTPB/json (API)
# Install 'DesignCTPB' in R: |
install.packages('DesignCTPB', repos = c('https://ubcxzhang.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ubcxzhang/designctpb/issues
Last updated 4 years agofrom:6fe5bbb323. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | NOTE | Nov 19 2024 |
R-4.5-linux | NOTE | Nov 19 2024 |
R-4.4-win | NOTE | Nov 19 2024 |
R-4.4-mac | NOTE | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:alpha.splitdesignCTPB
Dependencies:askpassbase64encbslibcachemclicolorspacecpp11crosstalkcurldata.tabledigestdotCall64dplyrevaluatefansifarverfastmapfieldsfontawesomefsgenericsggplot2gluegtableherehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclemagrittrmapsMASSMatrixmemoisemgcvmimemnormtmunsellnlmeopensslpillarpkgconfigplotlypngpromisespurrrR6rappdirsRColorBrewerRcppRcppTOMLreticulaterlangrmarkdownrprojrootsassscalesspamstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml